265 research outputs found

    Towards adaptive argumentation learning systems : theoretical and practical considerations in the design of argumentation learning systems

    Get PDF
    This dissertation addresses four issues of pivotal importance in realizing the promises of adaptive argumentation learning systems: (1) User interface: How can argumentation user interfaces be designed to effectively structure and support problem solving, peer interaction, and learning? (2) Software architecture: How can software architectures of adaptive argumentation learning systems be designed to be employable across different argumentation domains and application scenarios in a flexible and cost-effective manner? (3) Diagnostics: How can user behavior be analyzed, automatically and accurately, to drive automated adaptations and help generation? (4) Adaptation: How can strategies for automated adaptation and support be designed to promote problem solving, peer interaction, and learning in an optimal fashion? Regarding issue (1), this dissertation investigates argument diagrams and structured discussion interfaces, two areas of focal interest in argumentation learning research during the past decades. The foundation for such structuring approaches is given by theories of learning and teaching with knowledge representations (theory of representational guidance) and collaboration scripts (script theory of guidance in computer-supported collaborative learning). This dissertation brings these two strands of research together and presents a computer-based learning environment that combines both approaches to support students in conducting high-quality discussions of controversial texts. An empirical study confirms that this combined approach has positive impact on the quality of discussions, thus, underpins the theoretical basis of the approach. Regarding issue (2), this dissertation presents a software framework for enhancing argumentation systems with adaptive support mechanisms. Adaptive support functionality of past argumentation systems has been tailored to particular domains and application scenarios. A novel software framework is presented that abstracts from the specific demands of different domains and application scenarios to provide a more general approach. The approach comprises an extensive configuration subsystem that allows the flexible definition of intelligent software agents, that is, software components able to reason and act autonomously to help students engage in fruitful learning activities. A graphical authoring tool has been conceptualized and implemented to simplify the process of defining and administering software agents beyond what has been achieved with the provided framework system. Among other things, the authoring tool allows, for the first time, specifying relevant patterns in argument diagrams using a graphical language. Empirical results indicate the high potential of the authoring approach but also challenges for future research. Regarding issue (3), the dissertation investigates two alternative approaches to automatically analyzing argumentation learning activities: the knowledge-driven and the data-driven analysis method. The knowledge-driven approach utilizes a pattern search component to identify relevant structures in argument diagrams based on declarative pattern specifications. The capabilities and appropriateness of this approach are demonstrated through three exemplary applications, for which pedagogically relevant patterns have been defined and implemented within the component. The approach proves particularly useful for patterns of limited complexity in scenarios with sufficient expert knowledge available. The data-driven approach is based on machine learning techniques, which have been employed to induce computational classifiers for important aspects of graphical online discussions, such as off-topic contributions, reasoned claims, and question-answer interactions. Validation results indicate that this approach can be realistically used even for complex classification tasks involving natural language. This research constitutes the first investigation on the use of machine learning techniques to analyze diagram-based educational discussions. The dissertation concludes with discussing the four addressed research challenges in the broader context of existing theories and empirical results. The pros and cons of different options in the design of argumentation learning systems are juxtaposed; areas for future research are identified. This final part of the dissertation gives researchers and practitioners a synopsis of the current state of the art in the design of argumentation learning systems and its theoretical and empirical underpinning. Special attention is paid to issue (4), with an in-depth discussion of existing adaptation approaches and corresponding empirical results.Diese Dissertationsschrift behandelt die folgenden vier Fragestellungen, welche bei der Realisierung adaptiver Argumentationssysteme von zentraler Bedeutung sind: (1) Benutzerschnittstelle: Wie mĂŒssen Benutzerschnittstellen beschaffen sein, um Problemlöse-, Kooperations- und Lernprozesse effektiv zu strukturieren und zu unterstĂŒtzen? (2) Softwarearchitektur: Wie können die FunktionalitĂ€ten eines adaptiven Argumentationslernsystems in eine Softwarearchitektur abgebildet werden, welche flexibel und mit angemessenem Aufwand in verschiedenen Bereichen und Szenarien einsetzbar ist? (3) Diagnostik: Wie kann Benutzerverhalten automatisch und mit hoher Genauigkeit analysiert werden, um automatisierte Anpassungen und Hilfestellungen effektiv zu steuern? (4) Adaption: Wie sollten automatisierte Anpassungen und Hilfestellungen ausgestaltet werden, um Problemlöse-, Kooperations- und Lernprozesse optimal zu unterstĂŒtzen? Hinsichtlich Fragestellung (1) untersucht diese Arbeit Argumentationsdiagramme und strukturierte Onlinediskussionen, zwei Schwerpunkte der Forschung zu Lernsystemen fĂŒr Argumentation der vergangenen Jahre. Die Grundlage solcher StrukturierungsansĂ€tze bilden Theorien zum Lehren und Lernen mit WissensreprĂ€sentationen (theory of representational guidance) und Kooperationsskripten (script theory of guidance in computer-supported collaborative learning). Diese Arbeit fĂŒhrt beide ForschungsstrĂ€nge in einer neuartigen Lernumgebung zusammen, die beide AnsĂ€tze vereint, um Lernende beim Diskutieren kontroverser Texte zu unterstĂŒtzen. Eine empirische Untersuchung zeigt, dass sich dieser kombinierte Ansatz positiv auf die DiskussionsqualitĂ€t auswirkt und bekrĂ€ftigt damit die zu Grunde liegenden theoretischen Annahmen. Hinsichtlich Fragestellung (2) stellt diese Arbeit ein Software-Rahmensystem zur Bereitstellung adaptiver UnterstĂŒtzungsmechanismen in Argumentationssystemen vor. Das Rahmensystem abstrahiert von domĂ€nen- und anwendungsspezifischen Besonderheiten und stellt damit einen generelleren Ansatz im Vergleich zu frĂŒheren Systemen dar. Der Ansatz umfasst ein umfangreiches Konfigurationssystem zur Definition intelligenter Softwareagenten, d. h. Softwarekomponenten, die eigestĂ€ndig schlussfolgern und handeln, um Lernprozesse zu unterstĂŒtzen. Um das Definieren und Administrieren von Softwareagenten ĂŒber das bereitgestellte Rahmensystem hinaus zu vereinfachen, wurde ein grafisches Autorenwerkzeug konzipiert und entwickelt. Unter anderem erlaubt dieses erstmals, relevante Muster in Argumentationsdiagrammen ohne Programmierung mittels einer grafischen Sprache zu spezifizieren. Empirische Befunde zeigen neben dem hohen Potential des Ansatzes auch die Notwendigkeit weiterfĂŒhrender Forschung. Hinsichtlich Fragestellung (3) untersucht diese Arbeit zwei alternative AnsĂ€tze zur automatisierten Analyse von LernaktivitĂ€ten im Bereich Argumentation: die wissensbasierte und die datenbasierte Analysemethodik. Der wissensbasierte Ansatz wurde mittels einer Softwarekomponente zur Mustersuche in Argumentationsdiagrammen umgesetzt, welche auf Grundlage deklarativer Musterbeschreibungen arbeitet. Die Möglichkeiten und Eignung des Ansatzes werden anhand von drei Beispielszenarien demonstriert, fĂŒr die verschiedenartige, pĂ€dagogisch relevante Muster innerhalb der entwickelten Softwarekomponente definiert wurden. Der Ansatz erweist sich insbesondere als nĂŒtzlich fĂŒr Muster eingeschrĂ€nkter KomplexitĂ€t in Szenarien, fĂŒr die Expertenwissen in ausreichendem Umfang verfĂŒgbar ist. Der datenbasierte Ansatz wurde mittels maschineller Lernverfahren umgesetzt. Mit deren Hilfe wurden Klassifikationsroutinen zur Analyse zentraler Aspekte von Onlinediskussionen, wie beispielsweise themenfremde BeitrĂ€ge, begrĂŒndete Aussagen und Frage-Antwort-Interaktionen, algorithmisch hergeleitet. Validierungsergebnisse zeigen, dass sich dieser Ansatz selbst fĂŒr komplexe Klassifikationsprobleme eignet, welche die BerĂŒcksichtigung natĂŒrlicher Sprache erfordern. Dies ist die erste Arbeit zum Einsatz maschineller Lernverfahren zur Analyse von diagrammbasierten Lerndiskussionen. Die Arbeit schließt mit einer Diskussion des aktuellen Forschungsstands hinsichtlich der vier Fragestellungen im breiteren Kontext existierender Theorien und empirischer Befunde. Die Vor- und Nachteile verschiedener Optionen fĂŒr die Gestaltung von Lernsystemen fĂŒr Argumentation werden gegenĂŒbergestellt und zukĂŒnftige Forschungsfelder vorgeschlagen. Dieser letzte Teil der Arbeit bietet Forschern und Anwendern einen umfassenden Überblick des aktuellen Forschungsstands bezĂŒglich des Designs computerbasierter Argumentationslernsysteme und den zugrunde liegenden lehr- und lerntheoretischen Erkenntnissen. Insbesondere wird auf Fragestellung (4) vertiefend eingegangen und bisherige AdaptionsansĂ€tze einschließlich entsprechender empirischer Befunde erörtert

    Exploring creative thinking in graphically mediated synchronous dialogues

    Get PDF
    publication-status: Publishedtypes: ArticleThis paper reports on an aspect of the EC funded Argunaut project which researched and developed awareness tools for moderators of online dialogues. In this study we report on an investigation into the nature of creative thinking in online dialogues and whether or not this creative thinking can be coded for and recognized automatically such that moderators can be alerted when creative thinking is occurring or when it has not occurred after a period of time. We outline a dialogic theory of creativity, as the emergence of new perspectives from the interplay of voices, and the testing of this theory using a range of methods including a coding scheme which combined coding for creative thinking with more established codes for critical thinking, artificial intelligence pattern-matching techniques to see if our codes could be read automatically from maps and ‘key event recall’ interviews to explore the experience of participants. Our findings are that: (1) the emergence of new perspectives in a graphical dialogue map can be recognized by our coding scheme supported by a machine pattern-matching algorithm in a way that can be used to provide awareness indicators for moderators; (2) that the trigger events leading to the emergence of new perspectives in the online dialogues studied were most commonly disagreements and (3) the spatial representation of messages in a graphically mediated synchronous dialogue environment such as Digalo may offer more affordance for creativity than the much more common scrolling text chat environments. All these findings support the usefulness of our new account of creativity in online dialogues based on dialogic theory and demonstrate that this account can be operationalised through machine coding in a way that can be turned into alerts for moderators

    Determining ‘Age at Death’ for Forensic Purposes using Human Bone by a Laboratory-based Analytical Method

    Get PDF
    Determination of age-at-death (AAD) is an important and frequent requirement in contemporary forensic science and in the reconstruction of past populations and societies from their remains. Its estimation is relatively straightforward and accurate (±3 years) for immature skeletons by using morphological features and reference tables within the context of forensic anthropology. However, after skeletal maturity (>35 yrs) estimates become inaccurate, particularly in the legal context. In line with the general migration of all the forensic sciences from reliance upon empirical criteria to those which are more evidence-based, AAD determination should rely more-and-more upon more quantitative methods. We explore here whether well-known changes in the biomechanical properties of bone and the properties of bone matrix, which have been seen to change with age even after skeletal maturity in a traceable manner, can be used to provide a reliable estimate of AAD. This method charts a combination of physical characteristics some of which are measured at a macroscopic level (wet & dry apparent density, porosity, organic/mineral/water fractions, collagen thermal degradation properties, ash content) and others at the microscopic level (Ca/P ratios, osteonal and matrix microhardness, image analysis of sections). This method produced successful age estimates on a cohort of 12 donors of age 53–85 yr (7 male, 5 female), where the age of the individual could be approximated within less than ±1 yr. This represents a vastly improved level of accuracy than currently extant age estimation techniques. It also presents: (1) a greater level of reliability and objectivity as the results are not dependent on the experience and expertise of the observer, as is so often the case in forensic skeletal age estimation methods; (2) it is purely laboratory-based analytical technique which can be carried out by someone with technical skills and not the specialised forensic anthropology experience; (3) it can be applied worldwide following stringent laboratory protocols. As such, this technique contributes significantly to improving age estimation and therefore identification methods for forensic and other purposes

    A General Formulation of the Source Confusion Statistics and Application to Infrared Galaxy Surveys

    Full text link
    Source confusion has been a long-standing problem in the astronomical history. In the previous formulation, sources are assumed to be distributed homogeneously on the sky. This fundamental assumption is not realistic in many applications. In this work, by making use of the point field theory, we derive general analytic formulae for the confusion problems with arbitrary distribution and correlation functions. As a typical example, we apply these new formulae to the source confusion of infrared galaxies. We first calculate the confusion statistics for power-law galaxy number counts as a test case. When the slope of differential number counts, \gamma, is steep, the confusion limits becomes much brighter and the probability distribution function (PDF) of the fluctuation field is strongly distorted. Then we estimate the PDF and confusion limits based on the realistic number count model for infrared galaxies. The gradual flattening of the slope of the source counts makes the clustering effect rather mild. Clustering effects result in an increase of the limiting flux density with \sim 10%. In this case, the peak probability of the PDF decreases up to \sim 15% and its tail becomes heavier.Comment: ApJ in press, 21 pages, 9 figures, using aastex.cls, emulateapj5.sty. Abstract abridge

    Computer-Supported Argumentation Learning: A Survey of Teachers, Researchers, and System Developers

    Full text link
    Abstract. Argumentation is omnipresent in our lives and therefore an important skill to learn. While classic face-to-face argumentation and debate has advantages in helping people learn to argue better, it does not scale up, limited by teacher time and availability. Computer-supported argumentation (CSA) is a viable alternative in learning to argue, currently increasing in popularity. In this paper, we present results from a survey we conducted with experts on argu-mentation learning systems, one which provides a glimpse on future directions

    Causality and stability of cosmic jets

    Get PDF
    In stark contrast to their laboratory and terrestrial counterparts, cosmic jets appear to be very stable. They are able to penetrate vast spaces, which exceed by up to a billion times the size of their central engines. We propose that the reason behind this remarkable property is the loss of causal connectivity across these jets, caused by their rapid expansion in response to fast decline of external pressure with the distance from the "jet engine". In atmospheres with power-law pressure distribution, pext / z , the total loss of causal connectivity occurs, when > 2 { the steepness which is expected to be quite common for many astrophysical environments. This conclusion does not seem to depend on the physical nature of jets- it applies both to relativistic and non-relativistic flows, both magnetically-dominated and unmagnetised jets. In order to verify it, we have carried out numerical simulations of moderately magnetised and moderately relativistic jets. The results give strong support to our hypothesis and provide with valuable insights. In particular, we find that the z-pinched inner cores of magnetic jets expand slower than their envelopes and become susceptible to instabilities even when the whole jet is stable. This may result in local dissipation and emission without global disintegration of the flow. Cosmic jets may become globally unstable when they enter at sections of external atmospheres. We propose that the Fanaro -Riley morphological division of extragalactic radio sources into two classes is related to this issue. In particular, we argue that the low power FR-I jets become re-confined, causally connected and globally unstable on the scale of galactic X-ray coronas, whereas more powerful FR-II jets re-confine much further out, already on the scale of radio lobes, and remain largely intact until they terminate at hot spots. Using this idea, we derived the relationship between the critical jet power and the optical luminosity of the host galaxy, which is in a very good agreement with the observations

    Submillimeter Number Counts From Statistical Analysis of BLAST Maps

    Full text link
    We describe the application of a statistical method to estimate submillimeter galaxy number counts from confusion limited observations by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST). Our method is based on a maximum likelihood fit to the pixel histogram, sometimes called 'P(D)', an approach which has been used before to probe faint counts, the difference being that here we advocate its use even for sources with relatively high signal-to-noise ratios. This method has an advantage over standard techniques of source extraction in providing an unbiased estimate of the counts from the bright end down to flux densities well below the confusion limit. We specifically analyse BLAST observations of a roughly 10 sq. deg. map centered on the Great Observatories Origins Deep Survey South (GOODS-S) field. We provide estimates of number counts at the three BLAST wavelengths, 250, 350, and 500 microns; instead of counting sources in flux bins we estimate the counts at several flux density nodes connected with power-laws. We observe a generally very steep slope for the counts of about -3.7 at 250 microns and -4.5 at 350 and 500 microns, over the range ~0.02-0.5 Jy, breaking to a shallower slope below about 0.015 Jy at all three wavelengths. We also describe how to estimate the uncertainties and correlations in this method so that the results can be used for model-fitting. This method should be well-suited for analysis of data from the Herschel satellite.Comment: Accepted for publication in the Astrophysical Journal; see associated data and other papers at http://blastexperiment.info

    Transforming European Water Governance? Participation and River Basin Management under the EU Water Framework Directive in 13 Member States

    Get PDF
    The European Union (EU) Water Framework Directive (WFD) requires EU member states to produce and implement river basin management plans, which are to be designed and updated via participatory processes that inform, consult with, and actively involve all interested stakeholders. The assumption of the European Commission is that stakeholder participation, and institutional adaptation and procedural innovation to facilitate it, are essential to the effectiveness of river basin planning and, ultimately, the environmental impact of the Directive. We analyzed official documents and the WFD literature to compare implementation of the Directive in EU member states in the initial WFD planning phase (2000–2009). Examining the development of participatory approaches to river basin management planning, we consider the extent of transformation in EU water governance over the period. Employing a mixed quantitative and qualitative approach, we map the implementation “trajectories” of 13 member states, and then provide a detailed examination of shifts in river basin planning and participation in four member states (Germany, Sweden, Poland and France) to illustrate the diversity of institutional approaches observed. We identify a general tendency towards increased, yet circumscribed, stakeholder participation in river basin management in the member states examined, alongside clear continuities in terms of their respective pre-WFD institutional and procedural arrangements. Overall, the WFD has driven a highly uneven shift to river basin-level planning among the member states, and instigated a range of efforts to institutionalize stakeholder involvement—often through the establishment of advisory groups to bring organized stakeholders into the planning process

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far
    • 

    corecore